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Inversion of Toeplitz Band Matrices 

By William F. Trench 

Abstract. An algorithm for inverting Toeplitz matrices is simplified for Toeplitz band 

matrices. In some cases, the simplification yields formulas for the elements in the first 

row and column of the inverse, from which the remaining elements can be easily calcu- 

lated. Two examples are given. In any case, the simplification yields a recursive 

method for computing the first row and column of the inverse of an nth order Toe- 

plitz band matrix with 0(n) operations, where 0(n2) are required with the more gen- 

eral algorithm. 

1. Introduction. A Toeplitz matrix is of the form 

?'0 ?'-1 ?'-2 ... '-n 

(1) Tn = 'k1 ?'0 '-1 O-n+l r =[r- rs 

-n O;n- 1 0 n-2 ... 00 

In [5], the author derived an algorithm for inverting a hermitian Toeplitz matrix Tn 
with 0(n2) operations (rather than 0(n3), as required by standard matrix inversion 
methods) and stated a similar algorithm for the nonhermitian case. These algorithms 
require that all principal minors of Tn be nonzero. Zohar [8] derived the extended 
algorithm in detail, and Akaike [1] generalized Zohar's derivation to block Toeplitz 
matrices. Bareiss [2] gave an algorithm for solving the linear system Tnx = y with 
0(n2) operations. 

In this paper, we simplify the more general algorithm of [5] for the case where 

Tn is a Toeplitz band matrix, by which we mean that there are integers p and q, 
1 < p, q < n, such that 

(2) Op#O, O-q * ?OrO= if r>p or r<-q. 

In some cases, including two recently treated by quite different methods [3], [4], 
this simplification yields formulas for the elements of the first row and column of 

Tn- 1, from which its remaining elements can easily be calculated by Theorem 1, below. 
In any case, the simplification yields the first row and column of Tn- 1 with 0(n) 
operations, where 0(n2) operations are required for the more general procedure of [5]. 
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2. Computation of T,- 1 from its First Row and Column. We follow the nota- 

tion of [5]; therefore, in applying the results given here, the reader should note that 

Tn is of order n + 1. If Tn- is nonsingular, we define { V) O,n - I Vn-ln-11 
and {770,n- 1, 'On - 1,n -I} by 

n-i 

(3) E, Otrs O>s,n- 1 = fr+ 1 0 < r -<. n-1 
s=0 

and 
n-i 

(4) E Os-r7sn-l 4O-r-11 Or~n - 1. 
S=0 

We state the following theorem for reference below. 
THEOREM 1. If Tn and Tn~ are both nonsingular, then Tn- 1 [brsn] ns=0 

is given by 

(5) bn A- 1 

(6) b~~~Oon -/n-1 Vr-l,n- 1 A1n 

(7) b~s = -/- 715 snl < s -< n; 

and 

b =b +A1 
(8) rsn r- 1,s- 1,n n- 1 (Pr- 1in- 1 ils- I,n-I - rln-r,n- 1 n-s,n-I), 

1 r, s A n, 

where 
n-i 

(9) An -1 = o - FL Os+ i s,n-1 
s=0 

or, equivalently, 
n-i 

(10) Ain-1 =o 00 
- -s- 1 Os~n-i 

s=0 

Equations (5)-(8) are stated in [5], but derived there only for hermitian Tn. 
The derivation for the general case appears in [8]. Equations (9) and (10) do not 
appear in [5] or [8], but the special case to which they both reduce when Tn is 

hermitian is derived in [5]; the same proof yields (9) and (10). 

3. The Difference Equations. Theorem 1 says that if Tn and Tn1 are non- 
singular, then Tn- 1 can easily be calculated from the solutions of (3) and (4). The 
following theorem shows that if Tn is a band matrix, these solutions can be found 
by solving two difference equations of order p + q. 

THEOREM 2. If T_ 1 is nonsingular and {Oy} satisfies (2), then {jn_ } 

can be extended to all integers j as the solution of the difference equation 

1P 

(11) E~~~F 0irin- ?1 -o < r <o, 
i=-q 

that satisfies the conditions 
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(12) i0jn- i=?, 
n 

jn +q - 1, 

0?j,n -1 = lj -p < j <6- I. 

Similarly, {ra1 n-i can be extended to all j as the solution of 

p 

(13) A, Oi71r+i n-1 = ?' -??o < r < oo, 
i=-q 

that satisfies 

(14) 7~~1jsn-1 0 ~ n <j < n + p - 1 

71i'n -1 -6- ,jj - q < j - 1. 

In terms of these extended sequences, (9) and (10) can be rewritten as 

(15) An-1 = _q77_q- ,n-1 
and 

An-1 =p 0pP-p-i,n-1 

We omit the routine verification of this theorem. A special case, applicable to 
hermitian Tn, has been stated and used [6], [7] for finding minimum variance pre- 
diction formulas for finite moving-average processes. 

Example 1. Hoskins and Ponzo [3] have given formulas for the inverses of Toe- 
plitz band matrices with 

/ k\ 
(16) = (- '~' ( 2 

m + j 

in the case where k = 2r and m = r. Theorems 1 and 2 yield Tn- 1 when k and 
m are any integers such that 1 < m < k - 1. 

Let p = k - m and q = m in Theorem 2. With Oj as defined by (16), the 
solutions of (11) and (13) are polynomials of degree not exceeding k - 1. Applying 
(12) and (14) yields 

(17) I. ( )m 1 Q - n- m + 1),n ( + 2)k-m- (17) V'jn - = (n + 1)m (k - m -1)! 

and 

(18) I)k-m-1 n-k + m + 
- k-m + 2)m 

(?jn-1 (n + l)k-m (m- 1)! 

where 

WXO .-, X) = x(x + 1) *X(x + s - 1), s > 1. 

Equation (15) yields 

(19) Ani = (n + m + l)k-m (n + 1)k-m 

Given (17), (18) and (19), Tn- 1 can now be obtained from (5)-(8). 
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Example 2. Rehnqvist [4] has given a method for inverting Toeplitz band ma- 

trices with 

(20) I)y = 1- IlIl/m if IjI < m, 

(0 if IjI>m. 
If 1 m 

Xr =Yj+r < r < , 
.\Mj=1i 

where {yr} is a wide sense stationary time series with zero mean, unit variance and 

independent samples, then E(XrXr+j) = 0,; thus, Tn is the autocovariance matrix of 

any n + 1 successive samples of {xr}. 

Rehnqvist's procedure requires multiplying Tn by matrices whose forms depend 

strongly on the residue class of n modulo m. This can be avoided by using Theo- 

rems 1 and 2. If 0, is given by (20), the characteristic polynomial of (11) is 

Zm-1 E -jZ=M 1(I_ Z)-2(I -zm)2; 
j=-m + 

thus 
rn-i 

O?r,n-l = (Bi,n-1 + rCj'n-1)exp(21Tirj/m), 

where {Bn- 1 } and { Cjn- 1 } are to be determined from (12). This problem is a 

special case of one solved in [6] in connection with linear minimum variance prediction 

of xr+k based on observed values of Xrxrix , ,xrn+1. Since %l- i j Xrj 

is the best such estimate of xr+ 1, the results of [6] apply here. The pertinent re- 

sults follow. 
Case 1. If n 0 (mod m), then 

j, n- = (n -)/(n + 1) if j 0 (mod m), 

Pjn-l = -(n -j)/(n + 1) if i - 1 (mod m), 

Oi,,n- 1= 0 otherwise; 

An-1 = (n + m)/m(n + 1). 

Case 2. If n 1 (mod m), then 

kjn-i (n + M 2)/(n +m - ) if j 0 (mod m), 

kn-l = - (n + m -X-2)/(n + m - 1) if I-- (mod m), 

,n-l = 0 otherwise; 

An- = (n + 2m -2)/m(n +m- 1). 

Case 3. If n k (mod m), where 2 < k < m - 1, then 

(n + 2m - 2k) (n + m - k -j) 
In- 1 (n + m - k) (n + 2m - 2k + 1) 0 (mod m), 
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n - (m - k + ? + 1) if j-k - 1 (mod m), 1 ~fl1(n + m - k) (n 2m 2k ) 

_ i~n -(n ?m-k-j- 1) if j - 1 (modm), Wj,n- 1 (n +m-k) 

Jj,n -i = 0 otherwise; 

(n + 2m - 2k) (n + 2m - k) 
n-1 m(n +m -k) (n +2m -2k+) 

Since Tn is symmetric, 7rn- 1 = OPr,n- 1 and Tn- can now be computed 
from (5)-(8). 

4. The Modified Algorithm for {f Or,n- 1 } and {7rn- 1 }. Even if the differ- 
ence equations of Theorem 2 cannot conveniently be solved explicitly, they still pro- 
vide a useful simplification in computing Tn- 1, as we now show. 

The algorithm of [5] includes a recursive procedure for computing O n- 1' 

On - i,n- 1 and 70,n- 1 I ' * * I 71n- i,n- 1 with 0(n2) operations, provided To, 
Tn_ 1 are all nonsingular. For band matrices, this can be done with 0(n) operations. 

THEOREM 3. Let p + q < k < n- 1. If Tk, Tk+ 1, , Tn-1 are all non- 

singular, then lO,n- 1' On - 1,n- 1 and 710,n- 1* 71n- 1,n- 1 can be com- 
puted as follows. 

(a) Obtain 4Ok, ' kk and 77Ok, 7 Tkk by solving (3) and (4) with 
n - 1 = k, and compute 

q- 1 

Ak = 
O E -r- 1 Ork 

r=o 

or, equivalently, 

p-i 

Ak tO 2 Or+ 1 Thr, k 
r=o 

(b) For k + 1 m n-1, compute 
m -1 

-mm 'A-1 F, S~ml'm-O s; 
s=m-_p 
m - 1 

77m m = 
m-l 1 7Rs'm-1 ?'-m+s; 

s=m -q 

(21) Orm = Pr,m-i - 1Pmm7m-r- i,m-i 

for < r<q- 1 and m - p + 1 Sr<m - 1; 

(22) ~7rm =7rm - 77mm m-r-l,m-l 

for 0 Sr<p - 1 and m - q + 1 Sr<m - 1; and Am = (I-Omm 7m m A - 
(c) Then compute 
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(23) V'L~i- q-1 
(23) O~~~r, n-1 ? E . ?j ur-q +a, n-l 

Oq 1=-P 

for q <r <m - p, with 4Ojn- = -6-lj for - p < j <- 1, and 

(24) r, n- jr-p+jn-1 
p j=-q 

for p r~m-q, with rqjn-1-- 1 for -q S j<-l. 
This theorem follows from Theorem 2 and recursion formulas given in [5] for 

{f Vrm} and {frm}. A special case of Theorem 3 for hermitian Tn was stated in 
[7] in connection with minimum variance prediction of finite moving-average processes. 

The essential difference between Theorem 3 and the general algorithm of [5] is 
that (23) and (24) are not available in the latter, and it is necessary to use (21) and 
(22) for m values (O ? r < m - 1) each, rather than p + q. 

S. Comments. In using Theorem 1, it is worthwhile to note that Tn 1 is sym- 
metric about its secondary diagonal; i.e., bn-sn-rn = brsn. If 0_i= 0,, then 

Tn 1 is also hermitian; moreover, the computations in Theorems 1, 2 and 3 are, in 
this case, further shortened by the fact that V;rm = 7lrm 

Throughout this paper, we have excluded the case where p = 0 or q = 0, so 
that Tn is triangular. Inversion of a nonsingular triangular Toeplitz matrix-band or 
not-is very simple: if 

(25) k. = O. j<O, 

and (without loss of generality) O = 1, then Tn, 1 is the Toeplitz matrix given by 

(26) brsn = -r-s- 1 

with = if i <- 1, 41=- 1, and 
1- 1 

(27) -i = Oi+l - E Oj-s O <j <n1. 
s=O 

To see this, note that (4) and (25) imply that 's n- 1 = 0 and that (3) is a triangular 

system with solution (27). Now, (26) follows from (5)-(8). 
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